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Abstract—Early detection of lung cancer and colon cancer is
very crucial for successful treatment, with histopathology images
serving as the gold standard of detection, despite its reliance on
manual expert analysis. In this paper, we develop MRAViT-XAI,
a novel Vision Transformer framework enhanced with multi-
resolution attention mechanisms for automated histopathological
image classification. The proposed architecture is designed to
simultaneously capture global contextual information and local
tissue morphology through cross-scale attention refinement, en-
abling precise identification of cancerous patterns at varying
magnifications. When tested with the LC25000 dataset, which
comprises 25,000 histopathological images in five categories, our
proposed method presents state-of-the-art performance with an
accuracy of 99.90%, outperforming other recent deep learn-
ing approaches. We incorporated Local Interpretable Model-
Agnostic Explanations (LIME) visualization technique to improve
model interpretability by visualizing diagnostically important
image regions, thus promoting clinical trust and transparency.
The results of the confusion matrix analysis indicate that the
classes are well separated, with a low degree of confusion among
the histologically similar subtypes. ROC curve analysis demon-
strates perfect AUC scores (1.00) across all classes, indicating the
excellent diagnostic performance of the model. This study shows
potential for multi-resolution transformer-based architectures to
disrupt computerized diagnosis systems for detecting cancer.

Index Terms—Vision Transformer, Multi-Resolution Attention,
Histopathology, Cancer Classification, Explainable AI

I. INTRODUCTION

Lung and colon cancers are two of the most widespread and
fatal types of cancer worldwide. Approximately 1.8 million
deaths due to lung cancer and over 900 thousand colon cancer
cases were reported worldwide in 2022 which urges the need
for precise early diagnosis to ensure effective treatment [1] [2].
Histopathology imaging is considered the gold standard for
cancer diagnosis, but it requires manual analysis which is both
tedious, slower and overly reliant on expert pathologists, high-
lighting the need for automated diagnostic tools that improve
efficiency, in the clinical setting [3]. Automated diagnosis

systems facilitate dependable classification from histopathol-
ogy images, making them relevant in case of early detection
and treatment of malignancies. In medical imaging, deep
learning techniques combined with convolutional networks
have accelerated the rate of recognition of global and local
features in the images. Recently, Vision Transformers (ViT)
have emerged as an alternative which contributed in medical
image classification due to their ability to capture intra-image
global and local patterns, often outperforming conventional
CNN models [4]. In this paper, we propose a new framework
MRAViT-XAI, Vision Transformers (ViT) [5] enhanced with
multi-resolution attention mechanisms which enables multi-
scale detail extraction, focusing on local structures as well as
wider patterns. It was evaluated on the LC25000 dataset [6].
The framework helped obtain an accuracy of 99.90% on
the dataset. We also integrated Local Interpretable Model-
Agnostic Explanations (LIME) [7], to highlight the regions
of image that affect the decision making process of the model
to enhance clinical trust. The main contributions of this paper
are:

• Developing MRAViT-XAI, a novel framework of vision
transformer (ViT) featuring multi-resolution attention
mechanisms to boost the ViT accuracy to 99.90%.

• Integrating Local Interpretable Model-Agnostic Explana-
tions (LIME), providing transparency and interpretability,
crucial for clinical confidence.

II. LITERATURE REVIEW

Earlier studies on histopathological image classification in
lung tissue have explored various computer-aided diagnosis
(CAD) systems. Nishio et al. [8] developed a CAD system
utilizing homology-based image processing (HI) for feature
extraction, demonstrating superior performance over conven-
tional texture analysis methods. Their approach involved cal-
culating Betti numbers to capture topological features of
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histopathological images, leading to improved classification
accuracy. Mangal et al. [9] introduced a CAD system employ-
ing shallow convolutional neural network (CNN) architectures
that preserved image resolution throughout the processing
pipeline. This strategy enhanced diagnostic accuracy while re-
ducing computational demands by effectively capturing tissue
patterns and connectivity. Merabet and Saighi [10] proposed a
hybrid deep learning architecture combining CNN, ResNet50,
and InceptionV3 models to improve colon cancer classifica-
tion. Their integrated approach achieved a predictive accuracy
of 99.27%, outperforming standalone models and highlighting
the benefits of combined architectures in enhancing diagnostic
precision for histopathological images from the LC25000
dataset. Pasha and Ata [11] explored ensemble learning tech-
niques by combining models such as VGG16 + ResNet50,
VGG16 + EfficientNetB0, and ResNet50 + EfficientNetB0.
By concatenating features from multiple models and applying
dense classification layers, they addressed feature redundancy
and managed morphological variability in images, demonstrat-
ing the efficiency of ensemble learning in histopathological
image classification.

III. METHODOLOGY

This section presents MRAViT-XAI, a novel framework for
the automatic classification of lung and colon cancer from
histopathology images using Vision Transformers enhanced
with multi-resolution attention mechanisms. Our study offers
a cross-scale attention refining approach, enabling the model
to simultaneously analyze global and local characteristics in
histopathology images, which is essential for accurate cancer
type classification. Our proposed framework is shown in
Figure 1.

A. Dataset Preparation

Our study used the LC25000 dataset [6], consisting of
25,000 H&E-stained histopathology images. It includes five
classes: lung adenocarcinoma, lung squamous cell carcinoma,
lung benign tissue, colon adenocarcinoma, and colon benign
tissue. The original image resolution was 768×768 pixels. The
dataset was split into 70% for training, 10% for validation,
and 20% for testing using stratified sampling to preserve class
balance across all splits.

In preprocessing, All images were resized to 224×224 pixels
to align with the ViT backbone’s input size. To enhance gen-
eralization and robustness, we applied extensive data augmen-
tations that simulated common variations in histopathology
imaging. These included: Random Resized Cropping (scale
0.7–1.0) for magnification and framing diversity; Random
Horizontal Flips (50%) for orientation invariance; Color Jitter
(brightness/contrast up to 30%, saturation 20%, hue 10%)
to mimic H&E staining variability; and combined Random
Rotations (±20°) with Random Affine transforms (±15° rota-
tion, 10% translation, 90-110% scaling, ±10° shear). These
geometric and color-space transformations helped the model
focus on diagnostically relevant features. Finally, images were
normalized using standard ImageNet statistics (mean = [0.485,

0.456, 0.406], std = [0.229, 0.224, 0.225]) to support transfer
learning.

B. Proposed Architecture

1) Vision Transformer Backbone: Our backbone feature
extractor is the ViT-B/16 architecture [5], pretrained on Im-
ageNet. This model splits input images into 16×16 non-
overlapping patches, projecting each patch onto a 768-
dimensional embedding space. Twelve transformer encoder
blocks process these embeddings together with positional en-
codings. Each encoder block contains multi-head self-attention
(MSA) and multilayer perceptron (MLP) modules with resid-
ual connections. Instead of relying solely on the class token
output, we preserve spatial information, which is vital for our
downstream attention modules by extracting and utilizing the
entire feature map from the final transformer layer.

2) Multi-Resolution Attention Module: The main novelty in
our methodology is the Multi-Resolution Attention (MRA)
module. It enhances the model’s ability to concurrently focus
on features across multiple scales. The MRA module ana-
lyzes feature maps at three distinct resolutions, as defined
in Equations (1), adapting techniques seen in multi-scale
architectures [12].

Fi = Pooli
(
Convi

(
GELU

(
BNi(x)

)))
, i ∈ {1, 2, 3} (1)

Here, Pooli denotes adaptive average pooling at scale i with
pool dimensions [7 × 7, 4 × 4, 1 × 1], generating multi-
scale feature representations. Each pooled feature map is then
processed through a bottleneck architecture [13] with channel
reduction and restoration to maintain computational efficiency
while capturing scale-specific features.

The importance of each resolution is determined by a learn-
able scale attention mechanism, similar in principle to attention
methods introduced in [14], as shown in Equations (2):

α = Softmax
(
Wα [F p

1 , F
p
2 , F

p
3 ]

)
(2)

where F p
i represents the globally pooled features from each

scale. These are concatenated and projected using a weight
matrix Wα to generate scale attention weights.

The final enhanced feature representation is given in Equa-
tions (3):

Fenhanced =

3∑
i=1

αi F
resized
i + x (3)

where F resized
i denotes the upsampled features aligned to the

original spatial dimensions, and the original input x is added
as a residual connection [13].

3) Cross-Scale Attention Refinement: After multi-
resolution feature extraction, we employed a Cross-Scale
Attention Refinement (CSAR) approach to facilitate
interaction between features at multiple scales. This module
applies self-attention [15] over the spatial dimensions, treating
the enhanced spatial features as a sequence, as shown in
Equation (4).
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Fig. 1: MRAViT-XAI Framework

F̂ = Norm
(
Fflat

)
, Frefined = F̂ +MHA

(
F̂ , F̂ , F̂

)
(4)

In this equation, Fflat denotes the spatially flattened form of
Fenhanced, and MHA represents multi-head attention [15] with
8 attention heads. The output Frefined is the refined feature
representation.

This operation enables the model to capture long-range
dependencies across spatial locations and resolutions by effec-
tively integrating both local and global contextual information.

4) Classification Head: The refined features from the
CSAR module are globally pooled and passed through a
feature projection module consisting of layer normaliza-
tion [16], dimensionality reduction to 512 features, GELU
activation [17], and dropout regularization (rate = 0.2) [18].
The final classification layer outputs logits corresponding to
the five cancer classes, as shown in Equations (5)

y = Wcls · Dropout(GELU(Linear(LayerNorm(Fpool)))) (5)

We employ a stable focal loss function [19] to handle class
imbalance and focus learning on harder examples. The loss
function is defined in Equations (6)

Lfocal = −αt (1− pt)
γ log

(
pt
)

(6)

Here, pt denotes the predicted probability for the true class,
αt is a weighting factor used to balance class frequencies,
and γ = 2 is the focusing parameter that down-weights easy
examples and emphasizes hard ones.

C. Explainable AI with LIME

Our study employed Local Interpretable Model-Agnostic
Explanations (LIME) [7] to enhance clinical trustworthiness

and provide interpretability for our model’s predictions. LIME
produces locally faithful explanations by approximating the
complex model with an interpretable one in the neighborhood
of a specific prediction. The process involves segmenting
test images into superpixels, generating perturbed samples by
randomly masking these components, and obtaining predic-
tions from the model for each variation. A weighted linear
model is then trained on these samples to locally approximate
the original model’s behavior. This approach highlights the
image regions that most influence classification decisions.
The explanations are visualized as heatmaps overlaid on the
original images, where green indicates a positive contribution
to the prediction and red signifies a negative one. These visual
cues allow clinicians to verify whether the model’s focus aligns
with medically relevant features, thereby increasing trust in its
diagnostic outputs.

IV. RESULTS AND DISCUSSIONS

This section describes the experimental setup, presents
both quantitative and qualitative results of our proposed
Multi-Resolution Attention Vision Transformer (MRAViT-
XAI) framework on the LC25000 dataset, compares it against
state-of-the-art methods, and discusses our findings, including
insights from explainable artificial intelligence.

A. Implementation Details

1) Environment Setup: Experiments were conducted on the
Kaggle platform, utilizing cloud computing resources. The
setup included a 2-core Intel Xeon CPU with 29 GB of RAM
and a 16 GB VRAM accelerating NVIDIA Tesla P100 GPU.
We used PyTorch as the deep learning framework, along with
libraries such as torchvision, scikit-learn, and LIME.
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2) Hyperparameters and Training: The MRAViT-XAI
model was trained using a weight decay of 0.01 and the
AdamW optimizer [20]. We used a OneCycle learning rate
scheduler [21] with a maximum learning rate of 3e-5 over
10 epochs. To address potential class imbalance and focus on
harder instances, we employed Stable Focal Loss with γ = 2.0
and equal class weighting α = 0.2 for the 5 classes. A batch
size of 64 was used for training, while a batch size of 128 was
used for validation and testing. On the GPU, mixed-precision
training (AMP) was activated. To minimize overfitting and
select the best-performing model based on validation accuracy,
early stopping was employed with a patience of three epochs
and a minimum validation accuracy improvement delta of
0.001.

B. Training Dynamics

Fig. 2 shows the training and validation performance curves.
Within the first epoch, the training loss shows a significant
initial drop, and then across later epochs, it gradually con-
verges towards zero. Reflecting this pattern, the validation loss
stabilizes at a relatively low value early on, suggesting fast
learning and high generalization. In the training and validation
accuracy curve, we can observe a similar rapid increase,
surpassing 95% after the first epoch, and a plateau near 99% by
the third epoch. The small gap between training and validation
measurements points to the efficient reduction of overfitting
through the augmentations and regularization methods used.
Training was terminated early due to the early stopping criteria
being met at 9 epochs, as performance saturated after 6 epochs.
In terms of computational cost, the training for these 9 epochs
completed in 51 minutes, averaging 5.6 minutes per epoch.

Fig. 2: Training and validation loss and accuracy curves over
epochs.

1) Overall Performance: Our final model achieved an
overall performance of 99.90%. The class-wise proprietary
performance is shown in the classification report in Table I.
For the macro and weighted average, precision, recall, and F1-
score are all 0.9990, reflecting the uniformly high performance
across all five classes.

2) Confusion Matrix Analysis: The confusion matrix shown
in Fig. 3 visually verifies the good performance of the clas-
sification. The matrix has very strong diagonal dominance
because test images were classified correctly in almost all
samples. No substantial confusion was observed, except for
3 Lung Adenocarcinoma cases that were mislabeled as Lung

TABLE I: Classification Report on the Test Set

Class Precision Recall F1-score
colon aca 1.0000 1.0000 1.0000
colon n 1.0000 1.0000 1.0000
lung aca 0.9980 0.9970 0.9975
lung n 1.0000 1.0000 1.0000

lung scc 0.9970 0.9980 0.9975
Accuracy 0.9990

Macro avg 0.9990 0.9990 0.9990
Weighted avg 0.9990 0.9990 0.9990

Squamous Cell Carcinoma and 2 Lung Squamous Cell Car-
cinoma cases that were labeled as Lung Adenocarcinoma.
This small mix-up of histological lung cancer subtypes is
reasonable and again stresses how difficult it is to distinguish
these particular categories, even for automated tools. All other
classes were classified perfectly.

Fig. 3: Confusion matrix for the 5-class classification on the
LC25000 testset.

3) ROC Curve Analysis: Receiver Operating Characteristic
(ROC) curves and AUC values also support the discriminative
capability of the model as shown in Fig. 4. The AUC scores
of each individual class (’colon aca’, ’colon n’, ’lung aca’,
’lung n’, ’lung scc’) were 1.0000. The micro-average AUC
and macro-average AUC scores were, as a result, also 1.0000.
The ideal AUC score value indicates that the model has
excellent identifiability for all the classes over all the decision
thresholds.

4) Comparison with State-of-the-Art: We benchmarked
our MRAVIT-XAI framework with recently published SOTA
methods on the same dataset, LC25000. As presented in
Table II, our proposed method obtains an accuracy of 99.90%,
which is very competitive and superior to the performance of
many recent studies, such as DenseNet+RF, VGG16+CLAHE,
ColonNet, and CNN+VGG19, as well as the best algorithm
Ensemble DL and Self-ONN. Performance differences across
studies relate to varied preprocessing: Kumar et al. [22] used
resizing, Omar et al. [23] resizing with augmentation and
cropping, Hadiyoso et al. [24] CLAHE with resizing, Iqbal
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Fig. 4: Receiver Operating Characteristic (ROC) curves.

et al. [25] stain normalization and augmentation, Said et
al. [26] pixel normalization with resizing, and Rawashdeh et
al. [27] resizing, normalization and augmentation, differing
from our augmentation, resizing and normalization approach.
Our method demonstrates consistent superiority across this di-
verse methodological landscape. This demonstrates the success
of using the global receptive field of ViT jointly with our
multi-resolution attention mechanisms in such a histopatho-
logical classification task.

TABLE II: Performance comparison of the proposed MRAViT-
XAI framework against state-of-the-art methods

Reference Year Method Dataset Accuracy (%)
Kumar et al. [22] 2022 DenseNet121+RF LC25000 98.60
Omar et al. [23] 2023 Ensemble DL LC25000 99.44

Hadiyoso et al. [24] 2023 VGG16+CLAHE LC25000 98.96
Iqbal et al. [25] 2023 ColonNet LC25000 96.31
Said et al. [26] 2024 Self-ONN LC25000 99.74

Rawashdeh et al. [27] 2024 CNN+VGG19 LC25000 99.04
Proposed 2025 MRAViT-XAI LC25000 99.90

C. Ablation Study

To validate our architectural contributions, we conducted
an ablation study as shown in Table III. The findings show
that the performance over ViT baseline is confirmed with all
components added, with each step adding on MRA and CSAR
further improving performance.

TABLE III: Ablation study of proposed MRAViT-XAI variants

Configuration Accuracy Weighted F1-Score
ViT Baseline 0.9604 0.9604
ViT + MRA only 0.9736 0.9736
MRAViT-XAI 0.9990 0.9990

D. Qualitative Analysis and Explainability (XAI)

To interpret the decision-making mechanism of the model
and improve its reliability, we used LIME [7] to produce visual
explanations on test images. Fig. 5 shows the representative
samples for various categories.

The left column shows the original image along with its
true and predicted labels. The right column shows the LIME

explanation, where green regions are the super-pixels that
positively contribute to the predicted class, red regions con-
tribute negatively, and yellow contours represent superpixels
considered by LIME.

Fig. 5: LIME explainability results for representative test
images. (a) Lung Adenocarcinoma, (b) Lung Squamous Cell
Carcinoma, (c) Lung Benign Tissue, (d) Colon Adenocarci-
noma, (e) Colon Benign Tissue.

Observations from Fig. 5 indicate that the model tends to
attend to salient diagnostic features. The green highlighted
areas in cancerous tissues like Lung Adenocarcinoma, Lung
Squamous Cell Carcinoma, and Colon Adenocarcinoma imply
high cellular density, atypical nuclei, or glandular structures
typically associated with malignancies. For normal tissues
(Colon Benign Tissue, Lung Benign Tissue), the model ac-
curately identifies positive contributions from normal struc-
tures (green in Colon Benign Tissue) or highlights uncertain
regions that detract from cancer appearance (red in Lung
Benign Tissue). These qualitative results increase confidence
in the model’s alignment with known pathology. While these
visualizations are promising, a formal quantitative evaluation
through a user study with pathologists would be necessary to
confirm their clinical utility, which remains a key direction for
future work.

V. DISCUSSION

Experimental results confirm that the proposed MRAViT-
XAI framework is effective for multi-class classification of
lung and colon cancer histopathology. The ViT backbone’s
ability to model global dependencies, combined with MRA-
CSAR modules that integrate features across spatial scales,
leads to state-of-the-art performance (99.90% accuracy) on
the LC25000 dataset. Quantitatively, the model demonstrates
high precision, recall, F1-scores, and perfect AUC values,
reflecting robustness and discrimination power. Compared with
SOTA models, our approach is highly competitive. Qualita-
tively, LIME explanations indicate that the model focuses on
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diagnostically meaningful features, enhancing interpretability,
and potential for clinical trust. Despite its strengths, limitations
include the computational cost inherent to ViT-based models,
which directly impacts its scalability for real-time clinical
applications like high-throughput whole-slide image analysis.
The localized nature of LIME explanations also presents a
limitation. Furthermore, while we employed extensive data
augmentation and regularization techniques to mitigate over-
fitting, the model’s high accuracy on a single dataset warrants
further validation. Future work should therefore focus on
evaluating the MRAVIT-XAI framework on external datasets,
exploring model compression and optimization techniques to
enable clinical scalability, and quantitatively assessing the
clinical utility of the XAI features through user studies with
pathologists.

VI. CONCLUSION

This paper proposes MRAViT-XAI, a new Vision Trans-
former model with a multi-resolution attention mechanism
for classifying lung and colon cancer. On the LC25000
dataset, our method outperformed prior approaches with a
high accuracy of 99.90%. The use of Local Interpretable
Model-agnostic Explanations (LIME) for model explainability
provides visual insights to enhance clinical trust in the model’s
decision-making process. Our results highlight the promise
of MRAViT-XAI as a powerful yet interpretable tool for
automated histopathological diagnosis, supporting the field of
computational pathology.
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